Controlled rupture of magnetic polyelectrolyte microcapsules for drug delivery.

نویسندگان

  • Shang-Hsiu Hu
  • Chia-Hui Tsai
  • Chen-Fu Liao
  • Dean-Mo Liu
  • San-Yuan Chen
چکیده

In this study, a magnetic-sensitive microcapsule was prepared using Fe 3O 4/poly(allylamine) (Fe 3O 4/PAH) polyelectrolyte to construct the shell. Structural integrity, microstructural evolution, and corresponding release behaviors of fluorescence dyes and doxorubicin were systematically investigated. Experimental observations showed that the presence of the magnetic nanoparticles in the shell structure allowed the shell structure to evolve from nanocavity development to final rupture of the shell under a given magnetic stimulus of different time durations. Such a microstructural evolution of the magnetic sensitive shell structure explained a corresponding variation of the drug release profile, from relatively slow release to burst-like behavior at different stages of stimulus. It has proposed that the presence of magnetic nanoparticles produced heat, due to magnetic energy dissipation (as Brown and Neel relaxations), and mechanical vibration and motion that induced stress development in the thin shell. Both mechanisms significantly accelerated the relaxation of the shell structure, causing such a microstructural evolution. With such a controllable microstructural evolution of the magnetic-sensitive shell structure, active substances can be well-regulated in a manageable manner with a designable profile according to the time duration under magnetic field. A cell culture study also indicated that the magnetic-sensitive microcapsules allowed a rapid uptake by the A549 cell line, a cancerous cell line, suggesting that the magnetic-sensitive microcapsule with controllable rupturing behavior of the shell offers a potential and effective drug carrier for anticancer applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Biologically triggered exploding protein based microcapsules for drug delivery.

Biologically triggered exploding microcapsules were synthesized by layer-by-layer assembly of biopolymers. The microcapsules showed controlled rupturing behaviour upon exposure to a pathologically relevant biomolecule, trypsin. These microcapsules offer significant potential for clinical applications.

متن کامل

Lipid modified polyelectrolyte microcapsules with controlled diffusion.

The lipid coating introduced directly on (polystyrene sulfonate/polyallylamine hydrochloride)5 polyelectrolyte microcapsule surfaces significantly reduces the permeability of capsule walls estimated by fluorescence recovery after photobleaching (FRAP).

متن کامل

In situ preparation of magnetic Fe3O4 nanoparticles inside nanoporous poly(L-glutamic acid)/chitosan microcapsules for drug delivery.

The magnetic polymer microcapsules, as a promising environmental stimuli-responsive delivery vehicle, have been increasingly exploited to tackle the problem of remotely navigated delivery. This study presented a novel design and fabrication of magnetic poly(L-glutamic acid)/chitosan (PGA/CS) microcapsules. Magnetic Fe3O4 nanoparticles were in situ synthesized inside nanoporous PGA/CS microcapsu...

متن کامل

Design of Chitosan and Its Water Soluble Derivatives-Based Drug Carriers with Polyelectrolyte Complexes

Chitosan, the cationic polysaccharide derived from the natural polysaccharide chitin, has been studied as a biomaterial for more than two decades. As a polycationic polymer with favorable properties, it has been widely used to form polyelectrolyte complexes with polyanions for various applications in drug delivery fields. In recent years, a growing number of studies have been focused on the pre...

متن کامل

Single-step microfluidic fabrication of soft monodisperse polyelectrolyte microcapsules by interfacial complexation.

Common methods for fabrication of polyelectrolyte microcapsules rely on a multi-step process. We propose a single-step approach to generate polyelectrolyte microcapsules with 1-2 μm shells based on polyelectrolyte complexation across a water/oil droplet interface and study the effect of parameters controlling the polyelectrolyte complexation on shell thickness.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Langmuir : the ACS journal of surfaces and colloids

دوره 24 20  شماره 

صفحات  -

تاریخ انتشار 2008